Rhesus cytomegalovirus contains functional homologues of US2, US3, US6, and US11.
نویسندگان
چکیده
Human cytomegalovirus (HCMV) is a paradigm for mechanisms subverting antigen presentation by major histocompatibility complex (MHC) molecules. Due to its limited host range, HCMV cannot be studied in animals. Thus, the in vivo importance of inhibiting antigen presentation for the establishment and maintenance of infection with HCMV is unknown. Rhesus cytomegalovirus (RhCMV) is an emerging animal model that shares many of the features of HCMV infection. The recent completion of the genomic sequence of RhCMV revealed a significant degree of homology to HCMV. Strikingly, RhCMV contains several genes with low homology to the HCMV US6 gene family of inhibitors of the MHC I antigen presentation pathway. Here, we examine whether the RhCMV US6 homologues (open reading frames Rh182, -184, -185, -186, -187, and -189) interfere with the MHC I antigen-processing pathway. We demonstrate that Rh182 and Rh189 function similarly to HCMV US2 and US11, respectively, mediating the proteasomal degradation of newly synthesized MHC I. The US3 homologue, Rh184, delayed MHC I maturation. Unlike US3, MHC I molecules eventually escaped retention by Rh184, so that steady-state surface levels of MHC I remained unchanged. Rh185 acted similarly to US6 and inhibited peptide transport by TAP and, consequently, peptide loading of MHC I molecules. Thus, despite relatively low sequence conservation, US6 family-related genes in RhCMV are functionally closely related to the conserved structural features of HCMV immunomodulators. The conservation of these mechanisms implies their importance for immune evasion in vivo, a question that can now be addressed experimentally.
منابع مشابه
Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation.
Human cytomegalovirus (HCMV) establishes persistent lifelong infections and replicates slowly. To withstand robust immunity, HCMV utilizes numerous immune evasion strategies. The HCMV gene cassette encoding US2 to US11 encodes four homologous glycoproteins, US2, US3, US6, and US11, that inhibit the major histocompatibility complex class I (MHC-I) antigen presentation pathway, probably inhibitin...
متن کاملMesenchymal Stem Cells Engineered to Inhibit Complement-Mediated Damage
Mesenchymal stem cells (MSC) preferentially migrate to damaged tissues and, due to their immunomodulatory and trophic properties, contribute to tissue repair. Although MSC express molecules, such as membrane cofactor protein (CD46), complement decay-accelerating factor (CD55), and protectin (CD59), which confer protection from complement-mediated lysis, MSC are recruited and activated by anaphy...
متن کاملThe ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP.
Human cytomegalovirus (HCMV) inhibits MHC class I antigen presentation by a sequential multistep process involving a family of unique short (US) region-encoded glycoproteins. US3 retains class I molecules, whereas US2 and US11 mediate the cytosolic degradation of heavy chains by the proteosomes. In US6-transfected cells, however, intracellular transport of class I molecules is impaired because ...
متن کاملExpression dynamics of human cytomegalovirus immune evasion genes US3, US6, and US11 in the blood of lung transplant recipients.
Delayed elimination of human cytomegalovirus (HCMV)-infected cells by the host immune system may contribute to viral dissemination and pathogenesis of HCMV infection. The mRNA expression dynamics of HCMV-encoded immune evasion genes US3, US6, and US11 expressed after active HCMV infection were analyzed in blood samples of lung transplant recipients by means of quantitative nucleic acid sequence...
متن کاملHuman cytomegalovirus US3 chimeras containing US2 cytosolic residues acquire major histocompatibility class I and II protein degradation properties.
Human cytomegalovirus (HCMV) glycoprotein US2 increases the proteasome-mediated degradation of major histocompatibility complex (MHC) class I heavy chain (HC), class II DR-alpha and DM-alpha proteins, and HFE, a nonclassical MHC protein. US2-initiated degradation of MHC proteins apparently involves the recruitment of cellular proteins that participate in a process known as endoplasmic reticulum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 79 9 شماره
صفحات -
تاریخ انتشار 2005